
J .  Fluid Meeh. (1985), uol. 158, p p .  24.5268 

Printed in Great Britain 
245 

Numerical simulation of the turbulent 
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A numerical simulation of turbulent natural convection (the Rayleigh-BBnard 
problem) has been conducted using large-eddy-simulation (LES) methods and the 
results compared with several experiments. The development of the LES equation 
is outlined and discussed. The modelling of the small-scale turbulent motion (called 
subgrid modelling) is also discussed. The resulting LES equations are solved and data 
collected over a short period of time in a similar manner to the direct simulation of 
the governing conservation equations. An explicit, second-order accurate, finite- 
difference scheme is used to solve the equations. Various average properties of the 
resulting flow field are calculated from the data and compared with experimental data 
in the literature. The use of a subgrid model allows a higher value of Ra to be 
simulated than was previously possible with a direct simulation. The highest Ra 
successfully simulated was 2.5 x 10". The problems at higher values of Ra are 
discussed and suggestions for improvements made. 

1. Introduction 
Calculation of turbulent fluid flows is complicated by the large range of scales that 

exist in these flows. Direct simulations of these equations (the Navier-Stokes 
equations and the energy equation for convective heat flows) is not possible for highly 
turbulent flows with foreseeable computers owing to the large core size and 
computation time required. The large-scale-averaging approach, where correlation 
terms (i.e. the Reynolds stresses) are modelled, is not always satisfactory because the 
physics of the various scales that contribute to the correlation terms is not the same. 
Thus, a simple model to incorporate both the large- and small-scale physics is a 
difficult task. Even solving differential equations for the correlation terms does not 
solve this fundamental problem. 

The large-eddy-simulation technique (LES) overcomes some of these difficulties. 
A set of filtered flow equations can be formed by filtering the original flow equations 
(the Navier-Stokes and other pertinent transport equations) with different filter 
widths. The procedure is discussed by Kwak (1975) and Shaanan (1975) for spacial 
averaging. The set is parametrized by the filter width and ranges from the original 
flow equations (zero filter width) to the mean-flow turbulent equations (very large 
filter width). By selecting the filter width d, approximately equal to the size of the 
numerical grid width d one attains the equations to be solved using the LES 
technique. Reynolds (1976), Herring (1979) and Rogollo & Moin (1984) have surveyed 
some of the early work in this area. Though all researchers do not use the filter 
concept, the essence of their approach is the same (Deardorff 1973; Schumann, 
Grotzbach & Kleiser 1980). 
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The LES flow equations are similar to  the original flow equations with the inclusion 
of the correlation terms - the predominant ones being a term similar to the Reynolds 
stress and a velocity-temperature correlation term in the energy equation. Solutions 
to  the LES equations are also similar but the small-scale fluctuations (smaller than 
A,)  have been implicitly removed. The LES correlation terms which must be modelled 
or measured now contain only the small-scale turbulence. The small-scale motion is 
independent of the boundary conditions and can be modelled as a function of local 
flow conditions. This is an easier task than modelling both the small- and large-scale 
turbulent physics together. Since the correlation terms contain only a modelled 
estimate of the average effect of the small scales, the resulting solutions are therefore 
model estimates of the true solutions to the Navier-Stokes equations. 

The study of thermal turbulence is a problem for which the LES approach is 
particularly useful. Experimental data concerning the flow details are difficult to 
attain, especially when the mean velocity is zero. Long-time-average correlations of 
velocity and temperature, which quantify the heat-transfer physics, are dependent 
on the boundary conditions and are difficult to  model (Long 1976, 1977). The LES 
approach is a natural choice for further study of thermal turbulence since this method 
provides a more detailed evaluation of the correlation terms. DeardorfT (1973) has 
previously used this method to study atmospheric flows driven by thermal convection. 
The turbulent Rayleigh-BBnard problem was selected for study using the LES 
approach since i t  is a simple, documented problem that contains the natural-convection 
physics. Grotzbach (1982) and Lipps (1976) have performed similar calculations for 
the Rayleigh-BBnard problem. They did not include subgrid modelling and were 
limited to an Ra which was an order of magnitude smaller than this study. The choice 
of a problem uncomplicated by additional physical phenomena, and of using only 
the basic LES concepts of a filtered average and the algebraic equation modelling 
of the resulting Reynolds stress-like terms, was made to  make the evaluation of the 
coupling of the problem and the solution technique clearer. Several refinements to 
the basic LES theory have been tested on other flows (principally, homogeneous box 
turbulence). These were purposely left out since the advantages and disadvantages 
of these modifications have not been fully studied (Moin et al. 1978; Mansour et a,?. 
1979 ; Antonopoulos-Domis 1979). 

2. Rayleigh-Benard problem 
2.1. Problem definition 

The study of the heat transfer across an infinite, horizontal fluid layer heated from 
below and the resulting fluid motion has been used by many researchers to understand 
the fundamentals of natural convection. The basic geometry and physical parameters 
are shown in figure 1. The bottom plate is maintained at a higher temperature than 
the top plate, resulting in either conductive or convective heat transfer. The 
temperature of each plate is kept uniform in the horizontal directions and constant 
in time. Several modifications of the above have also been studied. For laboratory 
experimental studies and numerical simulations, the horizontal dimension must be 
finite. The problem is also studied with the zero-velocity boundary conditions of one 
or both flat plates replaced by zero-stress boundary conditions associated with a 
free boundary. A basic description of the Rayleigh-BBnard problem is given by 
Chandrasekhar (1961). Later articles by Busse (1981), Long (1977) and Denton & 
Wood (1979) survey more recent work on the problem. The case of flate-plate 
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FIGURE 1.  Geometry and parameters of the Rayleigh-BBnard problem. 

boundaries with finite horizontal dimensions is the subject in this study. The basic 
study is limited to the region where the fluid motion is turbulent, Ra >, lo5. The 
results from a preliminary study a t  Ra = lo4 are also presented. 

2.2.  Differential equations 
The governing equations for the fluid layer are the usual balance equations for 
conservation of mass, momentum and energy. The Boussinesq approximation is 
employed to simplify the mathematical analysis (Spiegel & Veronis 1960; Mihaljan 
1962). The dependent variables of the problem - tig (or ti, 8, a), pa and fia - are 
respectively the three velocity components, the temperature and the pressure. 2g (or 
2, ij, 2) and € are the spacial Cartesian co-ordinates and time. i = 1 and 2 signifies the 
horizontal direction and i = 3 gives the vertical direction perpendicular to  the plate 
boundaries. The fluid properties and problem parameters are as follows : p is the fluid 
density, po is the fluid density at the reference temperature, v is the kinematic 
viscosity, a is the thermal diffusivity, /3 is the coefficient of thermal expansion, c p  
is the specific heat, g is the acceleration of gravity, To is the reference temperature 
which is the fluid lower-surface temperature, AT is the temperature difference 
between the upper and lower surfaces, and h is the distance between the upper and 
lower surfaces. 

I n  order to  simplify the computations, the temperature and vertical pressure 
gradient are split into three parts: (i) a constant reference term; (ii) a term based 
on a conductive temperature profile; and (iii) the perturbations owing t o  the 
convective velocities. The first two parts are analytically solved, leaving the 
perturbation quantities to  be solved by the computer model : 

The convective-flow equations result from inserting (1 a, b)  into the dimensional form 
of the governing equations and using a, h, AT and po to obtain the following 
non-dimensional form : 
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and 

The non-dimensional form of the problem variables are represented using the same 
symbol as the dimensional form but with the ( A )  removed. 

2.3 .  Non-dimensional parameters and estimates 
Dimensional reasoning gives the heat transfer and fluid motion, in non-dimensional 
form: Nu = q / ( a / h )  AT is the Nusselt number, Pe = hUr .m.s , /a  is the PBclet number, 
Re = hUr.m.s . /v  is the Reynolds number. Nu and Pe or Re depend on the problem 
parameters grouped into two  dimensionless numbers: Ra = gp  AT h3 /va ,  the Rayleigh 
number, and Pr = v / a ,  the Prandtl number. q is the heat-transfer rate per unit area 
through the fluid layer divided byp, c p  and Ur.m.s, is the root mean square of a velocity 
fluctuation. Re and Pe can be defined for various averages of the different velocity 
components, collectively or individually. Krishnamurti ( 1970a, b )  has mapped the 
regions of Ra and Pr where the resulting fluid motion and heat transfer are 
qualitatively different. For finite size in the horizontal direction a third parameter, 
the aspect ratio A = Z/h, is needed. Here Z is an imposed horizontal dimension. There 
should exist a characteristic horizontal dimension I, which is a function of Ra and Pr. 
However, if A is much larger than A ,  = ZJh, then A should not be important. 

Dimensional analysis can be used to suggest forms for Pe or Re (Businger 1973). 
These equations are only used for comparing the model output and estimating the 
time step and are not an assumption in the calculations. For turbulent flows, the 
important governing parameters are g/3, a, h and A T .  Both the heat transfer wT 
and AT cannot be independent. If AT is assumed independent, then a characteristic 
velocity can be defined as follows: 

W, = (gpATh) : ,  (3) 

or (4) 

Similarly the heat input at the boundary q can be assumed independent. Since q = wT 
away from the wall, 

W, = (g/3hZ')i ,  ( 5 )  

or Pe = (Pr Ra Nu)!. (6) 
An equivalent relation to ( 5 )  for a characteristic temperature can be derived as 
follows : 

T, and W, have been found experimentally to  scale the r.m.s. temperature and velocity 
levels as Ra is varied (Deardorff 1970b). No experimental study is known that shows 
whether (4) or (6) is better. Note that (RaNu)! is approximately Ra) assuming 
Nu - Ra!; thus the exponents of the two equations are not greatly different. 

2.4. Boundary region 
As with the boundary-layer concept in isothermal flows, the flow near the wall 
boundary can be treated differently from the flow away from i t  to attain a more 
efficient model. The core region is composed of a flow field for which the small-scale 
motion is isotropic and in a state of equilibrium, as defined by Kolmogoroffs theory. 
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The flow in this region satisfies, for large Ra, the assumptions of subgrid modelling 
to be discussed in $4. At the lower Ra values of this study a large equilibrium region 
does not exist and this assumption is violated. However, at the lower values of Ra, 
only a small fraction of the turbulent motions are modelled. Near the wall the 
character of the turbulence is different ; for example, the long-time-average turbulent 
production, dissipation, and diffusion vary significantly as a function of the distance 
from the wall (Deardorff & Willis 1967). Modelling of the long-time-average correlation 
terms for the near-wall region is not fully understood because only limited data are 
available. Modelling of the subgrid correlation terms that result in the LES approach 
has no known direct, experimental support. The core subgrid model has indirect 
support through previous LES studies, but little work has been done in the wall area 
(especially for natural conveation) (Moin & Kim 1982). No experimental evidence 
exists to show how the subgrid turbulence near the wall differs from the core subgrid 
turbulence, However, the lengthscale of a subgrid model is expected to be reduced 
to account for the reduction in typical eddy sizes owing to the nearness of the wall. 
Thus, one possibility is to use the core-region subgrid model with the lengthscale 
reduced in the wall region. 

Another approach is to modify the subgrid model to account for direct production 
of turbulence caused by buoyancy a t  the subgrid level. In a natural-convection flow 
the production and other correlation terms of the turbulence can be modelled as a 
function of the gradient of the filtered temperature as well as of velocity. For a 
long-time average the mean velocity and thus its spacial gradients are zero. Therefore 
the turbulent production, r.m.s. velocity, and other mean correlation terms can be 
modelled only with the mean temperature gradient. For a filtered velocity and 
temperature field the instantaneous, spacial gradients are non-zero. The subgrid 
turbulence is assumed to be a function of the next-higher scales (due to the physics 
of cascading) and can thus be modelled by the local filtered velocity and/or 
temperature fields. Production of the subgrid turbulence by the filtered velocity 
gradient seems well justified, but direct production owing to buoyancy is not obvious. 
First, define a local Rayleigh and Reynolds number, Ra, a AT, hi and Re, cc AU, h, 
(h,, AT,, and AU, are the appropriate length, temperature and velocity scales 
that control the production of turbulence smaller than h,). The production of 
turbulence with scales smaller than h, (or cascading of turbulence) in general can be 
buoyancy generated as well as vorticity generated. However, because of the hi 
dependency, the buoyancy generation should be less than the vorticity generation 
for small h,. This assumes AT, and AU, have similar variations with h,. Near the wall 
this may not be true since the mean gradients are larger; thus ATg could be large 
enough to cause a generation of subgrid motion owing to buoyancy. In short, 
inclusion of the production term owing to buoyancy in a subgrid correlation model 
is of more importance near the wall. 

The final modelling problem near the wall is the handling of the viscous/conductive 
sublayer. If the numerical grid is not fine enough, a law of the wall must be used to 
account for the large curvature in velocity and temperature fields near the wall. No 
suitable law-of-the-wall theory is available for the mean flow field, much less for the 
filtered flow fie1d.t Since it was desired to keep the grid uniform for simplicity and 

t Several laws of the wall have been suggested: for example, TOC zf or T a  z-l. However, the 
experimental data does not support any particular model (Businger 1973 ; Fitzjarrald 1976; 
Goldstein & Chu 1967 ; and Chu BE Goldstein 1973). The existence of several sublayers with different 
dominant physics (Long 1976, 1977) suggests that a simple, universal law of the wall is not likely 
to exist. 
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not to use a law of the wall, the grid size had to be fine enough to include at  least 
one point in the sublayer. The range of application of the overall model is limited 
by this assumption. As the Ra increases, the sublayer becomes smaller compared with 
the grid size and the model is no longer valid. 

3. Large-eddy-simulation flow equations 
The LES equations are formed by convolution-averaging (2) with a low-pass filter. 

r = A,/A typically varies from 1 to 2 with values up to 4 used in some studies 
(McMillan & Ferziger 1979). The convolution average is defined as follows: 

The effects of different choices for G (other than being a low-pass filter of appropriate 
width) manifest themselves only when the higher-order correlation terms are 
considered. Here, these are neglected and so the choice of the following form for G 
is not critical to this study: 

1 
- for lx,-x;[ < ;Af, 

G(x,-x;) = / A f  

A, = A .  (9b) 

Kwak (1975) and Shaanan (1975) discuss the various properties of this average, 
two of which should be noted. First, it  is commutable with the derivative operators 
and therefore can be applied to the flow equations with results similar to the long-time 
average. The second property is that it  allows for scale information of order l / A ,  to 
be included in the filtered flow equations in a direct manner. This is accomplished 
when the dependent variables (u,(x,, t )  and T(x,, t ) )  are split into a filtered term 
(-,) and a fluctuating or small-scale term ( ) I f  similar to the Reynolds splitting 
using long-time averages : 

Equations (2a,  b ,  c) can be filtered using (8a,  b) and (9a, b). Equations (lOa, b) are 
then inserted. Several higher-order terms can be neglected and these are discussed 
in Rogallo & Moin (1984), Antonopoulos-Domis (1979) and Clark, Fertziger & 
Reynolds (1979). This averaging results in two terms, u r n f  and u;‘T” , which are 
similar to the conventional Reynolds stresses. They must be modelled and this is 
discussed in $4. Equations (2a, b ,  c )  now become 

f 
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A Poisson equation is used in place of (1 1 c )  : 

Gi (and G,) are shorthand notations, defined by comparing (1  1 a,  b )  to the following 
equations : 

aii; aPf 
at axj -+- = Gi, i = 1 ,2 ,3 ,  

(12b) 
aT" 
- = GT.  
at 

D iS in general zero but is included in (1  1 d )  for numerical-stability reasons. 

4. Modelling of the subgrid correlation terms 
4.1. Model derivations 

The subgrid theory has been documented by Reynolds (1976), Schumann et al. (1980), 
Eidson (1982) and Rogollo & Moin (1984). For the reasons discussed in the preceding 
sections, essentially the same model for the subgrid turbulence has been used by 
various researchers for a wide range of boundary conditions. A modification (Lilly 
1962), outlined below and used in this study, allows for the production of subgrid 
turbulence owing to buoyancy caused by temperature gradients in the large-scale or 
filtered flow field. Limited tests showed a small improvement in the r.m.9. levels in 
the wall regions with the buoyancy term included and i t  was therefore included in 
the subgrid modelled for the simulations reported in this paper (Eidson 1982). A more 
thorough study of the buoyancy-production correction is needed, however. 

u;' uiff can be interpreted as a stress similar to  a (the Reynolds stress). Similar 
dimensional and production-dissipation equilibrium arguments are used to  develop 
a model for u;' uiff. However, for the LES case the subgrid turbulence is produced 
by the large-scale turbulence where the filter splits the two ranges somewhere in the 
Kolmogoroff equilibrium region. Since the subgroup turbulence is assumed isotropic, 
the velocity gradient used to model it should not have a preferred direction. The 
following form first suggested by Smagorinsky (1963) is generally used : 

(13a) ui uj 3 i j  k uk 65 ' 
mf-Q ue = - K S f .  

-f -f s' = (SijS& 

Other modelling approaches have been tried in which extra differential equations for 
the subgrid correlation terms are solved (Schumann et al. 1980; and Deardovff 1973). 

The modification to  (13a, b,  c ,  d )  is derived by assuming that the subgrid turbuieiii 
production PSG includes a buoyancy term, 

PsG = $ij R.j + Pr Ra Si3 u;' Tff, (14a) 

where 

9 N L M  158 
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Additional assumptions include equilibrium of the small-scale turbulence Psc = e .  
and that ri, (and uif T f f )  are functions of E ,  A and (and aTf/axi). Here e denotes 
the turbulent dissipation rate. Thus 

74, = ei( Cd )! A$, (15a) 

and 

where C and Pr, (the subgrid turbulent Prandtl number) are proportionality 
constants. Equations (15a, b )  can be put in an eddy viscosity/conductivity form. 
Then 

rij = K,Si,, (16a) 
-f 

and 
K 

K T = Y r ,  

Combining (14)-( 16), the following equation for K results : 

Equation (17) is similar to  (13b) but K is enhanced for an unstable temperature 
gradient. Note that K2 was constrained to be equal to  zero when sf2 N 0 and 
aT/as, > 0 occur locally. The model constants in (13b) and (17)  were assumed to have 
the same value because of lack of information. The & , u r n  term in (13a) is 
combined with the pressure when substituted into (1  1 a )  forming a pseudo-pressure 
which is calculated by the model. If the actual pressure is desired, $aiju2L;cff must 
be estimated (Deardorff 1972). 

f 

4.2. Model constants 
The model constant C in (13b) has been fairly well established. Values of C from 
several numerical studies as well as several theoretical estimates by Lilly (Deardorff 
1971) are shown in table 1 .  A value of C = 0.21 was selected for this study since the 
work of Deardorff (1972) most nearly matched the boundary conditions of this study. 

The subgrid turbulent Prandtl number Pr, having different physical significance, 
does not have the value obtained for long-time-averaged turbulence. Studies by 
Grotzbach (1980), Grotzbach & Schumann (1979) and Deardorff (1971,1972) suggest 
a range of 4 to i. This is a t  the low end of the values surveyed by Reynolds (1975) 
for long-time-averaged turbulence. A value of 1/25 was selected for this study. 

5. Finite-difference scheme 
A simple, but previously well tested, numerical scheme was chosen. The main 

feature of this scheme was that it had minimum numerical diffusion with good 
stability properties. The second-order, explicit, finite-difference scheme discussed by 
Williams (1969) was used. It is a leapfrog scheme with a lagged diffusion term. The 
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C Source 

Isotropic box turbulence 
0.17-0.19 Clark (1979) 
0.14-0.16 McMillan & Ferziger (1979) 
0.21 Kwak (1975) 
0.24 Shaman (1975) 
0.19-0.24 Mansour et al. (1979) 

0.21 (unstable aT/az) DeardoriT (1972) 
0.13 (neutral aT/az) DeardoriT (1972) 

0.10 Deardorff (19704 

0.18-0.22 

Atmospheric convection 

Channel flow 

Theory 
Deardorff ( 197 1 ) 

(Estimates by Lilly) 

TABLE 1. Value of C from several studies 

Computer 

Core requirements 

Array size 

CRAY1, located at the National Center for Atmospheric Research 

approximately 1 megaword for program code and variable storage 

1.  69696 grid points 
2. 10 main variables - u, v, w, t ,  at 2 time steps; P and Q 
3. 696960 storage locations for main variables 

1. 0.67 s per time step 
2. lo00 s per run (1500 time steps) 

Facility in Boulder, Colorado 

(99 % of CRAY 1 core) 

Time requirements 

TABLE 2. Computational statistics 

momentum term was modified as suggested by Piacsek & Williams (1970). A time 
filter suggested by Robert (1966) was used to prevent time splitting. The aD/at 
correction to prevent nonlinear instabilities was noted in $ 3. The dependent variables 
were staggered on the numerical grid as in Williams (1969). The numerical grid had 
equal values of A in the three coordinate directions. 

Periodic boundary conditions were assumed in the horizontal direction. A large 
aspect ratio is desired to minimize the effect of these mathematical boundary 
conditions. A minimum of A = 3 (with 8-10 suggested) is necessary to include the 
largest natural wavelengths, based on the work of Deardorff & Willis (1965) and 
Fitzjarrald (1976). A value of A = 4 was used for this study, being the largest that 
the computer could accommodate without large input/output cost, table 2. The 
effects of A are also discussed by Grotzbach (1982, 1983). 

No-slip boundary conditions were used at the top and bottom walls and the 
temperature of the wall and the fluid were assumed to be the same. As discussed in 
$2, the viscous/conductive sublayer must be thick enough for the numerical scheme 
to determine accurately the derivatives near the wall. This is the weakest assumption 
in the overall model and was the probable reason for the lack of success of the model 
at high Ra. 

The computational statistics are shown in table 2. 

9-2 
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6. Results of numerical simulation 
6.1. Ra variation 

As the primary goal of this study was to evaluate the LES approach to studying 
turbulent natural convection, the model was run at 6 turbulent Rayleigh numbers 
(Pr = 0.71) and compared with experimental data reported in the literature. The 
simulations were started with a zero velocity field and a random temperature field. 
The random field was calculated from zero mean white noise with a small variance. 
The simulations were run for approximately 500 time steps to develop a ‘steady’ 
turbulent flow. 1000 additional steps were run to collect data for analysis. A time 
step of A ,  = 0.1741 W, was used where the largest velocity flow scales were estimated 
from (5). This relation was determined from a von Newman stability analysis of the 
basic scheme and the coefficient was increased slightly based on scaled-down ( A  = 1 )  
tests of the model (Eidson 1982). 

The filtered flow fields resulting from the model were assumed to be horizontally 
homogeneous and statistically steady in time. The long-‘term ’ averages to be 
compared with the experimental results in the literature were both horizontally and 
time averaged. These averages are denoted by ( ). The total long-‘term’ averages 
included a filtered-field component and a subgrid-field component : 

(ui)r.m.s. = ((u:))’; (18a) 

Cui)T.m.s. = + <(u;f)f.m.s.>. ( 1 8 b )  

The subgrid term is estimated using (13a) : 

No summation is made on subscript i. EsG is the subgrid kinetic energy and is 
estimated as (Lilly 1967) 

E ( k )  is the kinetic energy transformed into wavenumber space k .  A similar estimate 
for the subgrid temperature variance can be made (Shumann 1973). The N u  is 
calculated using 

and (wT) = (GfFf) + (wIfTff ) ,  

where ~ ’ ~ 7 ’ ’ ~ ~  is estimated from (16b). 
An important global result for comparison is the prediction of the N u  versus Ra 

relationship. N u  is formed from (9) near the vertical centre of the fluid: (y) was 
constant with vertical distance as is necessary for ‘steady’ conditions. Assuming the 
following form, the exponent a can be calculated from the simulation results, C,, 
being a constant : 

Using the data from the 4 lowest Ra points in figure 2, a = 0.28. The model prediction 
of the exponent for this rangc (Ra < 2.5 x lo6) is in excellent agreement with several 
experimental results. The variation of repeat tests (using different starting fields) has 
been included as error bars in figure 2 (also in figures 4 and 5) .  The magnitude of N u  
is higher than the experimental results, however. This is consistent with the direct 

N u  = C N u  Raa. (23) 
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FIGURE 2. Comparison of the simulation model with experimental measurements, Nu us R a :  
Nu = CNu Raa. a = 0.28, 0-0, model; -0-, Deardorff & Willis (1967); a = 0.294, ---, 
Goldstein & Chu (1969); a = 0.26, ---, Carrol (1976); a = 0.30, ----, Fitzjarrald (1976); *, 
Grotzbach (1982). 

simulations a t  lower, but still turbulent, Rayleigh numbers by Grotzbach (1982) and 
Lipps (1976). Grotzbach suggests that  this is owing to the small aspect ratios used 
in the numerical simulations. Based on the work of Lipps & Sommerville (1971) and 
Fitzjarrald (1976), Grotzbach suggests that  a large aspect ratio allows larger 
wavelength motions which impede the occurrence of heat flux. As a check on this 
hypothesis, the model was run using an aspect ratio of 2 and compared with the 
base-study results ( A  = 4). The increase in N u  from 13.8 ( A  = 4) to  14.4 ( A  = 2) for 
Ra = 2.5 x lo6 is small, but it shows the above trend. Another possibility is 
insufficient grid resolution near the wall. Comparison of cases 7 ,  8, and 9 with cases 
13 and 14 in Grotzbach (1982) show a higher N u  for a larger grid. Grotzbach (1983) 
discusses this further. 

Above Ra = 2.5 x lo6, the N u  values do not increase at the rate suggested by the 
experimental data. In  fact, they appear to  be asymptotically approaching a 
maximum level. An analysis of the heat-transfer boundary condition suggests a 
reason for the model's failure. The data of Goldstein & Chu (1969) in figure 3 show 
that for Ra > 3 x lo6 the first vertical grid point is outside the conductive sublayer 
6 (the region where T' or 0 versus x3 is linear). Thus for the larger values of Ra the 
grid resolution is not sufficient. The insufficient resolution can be shown to place a 
limit on the maximum N u  that  the model can predict. The average heat transfer must 
be the same a t  all vertical levels. If the Nu, (the N u  a t  the wall) has a maximum, 
the Nu of the entire model is limited. Nu, is solely a function of conduction. The 
second-order, finite-difference scheme used in this study for aTf/8z3 results in the 
following equation for Nu,  : 

3T, - fT, 
NU,= A . 

TI and T, are the values of @ a t  the closest (x3  = i A )  and second closest (x3 = : A )  
grid points to the wall. The maximum realistic value of 5'; and minimum realistic 
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FIGURE 3. Estimate of conductive sublayer, data of Goldstein & Chu (1969), 6 x lo6 < Ru < 6 x 10': 
z,, 1st grid point = &; 6, = z,/(z/S), = (&)/0.6; Nu, = 1/26, = 9.6; Nu = 0.123Ra0~a04 
=- Ra, z 3 x 10'. 
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1 O b  108 107 
Ra 
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FIGURE 4. Comparison of the simulation model with experimental measurements, ( u ~ ) ~ . ~ . ~ .  us Ra: 
A--& Wr.m.sj 0-0, u ~ . ~ . ~ .  model; 0-0, +, dimensional estimates of slope (see 
$2.3); -, experimental data. 

value of T, are needed to maximize Nu,. TI '= !j and T, = !j give (Nu,),,, = 2 1. Since 
the experimental values of Nu for Ra of order 10' are in the 15-20 range, the artificial 
cap on Nu by the model is a serious deficiency at  the higher values of Ra. 

The variation of the velocity and temperature r.m.5. levels as functions of Ra are 
shown in figures 4 and 5. Their comparison with experimental data is similar to the 
Nu results. They give good agreement with the power-law exponent predicted by 
dimensional arguments and measured by the experiments. However, their values are 
higher than the experimental measurements. The correlation coefficients (table 3) 
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Fitzjar- 
(1976) - X 

10-2 - 
1 0 5  10' 107 

Ra 
1 0 8  

FIQURE 5.  Comparison of the simulation model with experimental measurements, Tr.m.s. us Ra: 
x--x  , model; +, dimensional estimates of slope (see $2.3); -, experimental data. 

Deardorff & Willis 
Ra Model (1967) 

L O X  104 0.93 - 
3 . 8 ~  lo5 0.70 - 
6 . 3 ~  lo5 0.74 0.61 
1 . 4 ~  lo6 0.69 - 
2 . 5 ~  lo6 0.69 0.61 
L O X  107 0.67 0.54 

Fitz jarrald 
(1976) 

- 

0.51 
- 

Grotzbach 
(1981) 
- 

0.70 
- 

TABLE 3. Correlation coefficient of vertical velocity and temperature 

predicted by the model are also high, so the high ( q )  away from the wall is not caused 
solely by the higher r.m.s. levels. 

The vertical profiles of the horizontally averaged and time averaged temperature 
gave good agreement with the experimental data. I n  figure 6 the profile for 
Ra = 6.3 x lo5 is compared with the data of Deardorff & Willis (1967). Near the wall 
the model predicts a slightly larger slope, as is consistent with the higher value of 
Nu. Goldstein & Chu (1969) suggested a normalization scheme which collapses the 
mean-temperature vertical profile : 

6 = 1/(2Nu). (25b) 
The model predictions of normalized mean temperature also collapse as shown in 
figure 7 .  Since the Nu is part of the normalization scheme and the model and 
experimental data give different values of Nu,  the 6' versus 6 curve (calculated from 
model results) varies slightly, depending on whether the experimental or model value 
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FIGURE 6. Horizontally averaged temperature profile : 
0-0, model; ---, DeardortT& Willis (1987). 
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FIGURE 7. Normalized horizontally averaged temperature profile. Model: x , Ra = 3.8 x 10'; 0, 
6.3 x l@; 0,  1.4 x 10'; A, 2.5 x 10'; 0, 1.0 x 10'. -, Goldstein & Chu. 

of Nu for the same Ra is used. In  both cases the data collapse; however, better 
quantitative agreement results from the use of the experimental value of Nu to 
normalize both the experimental and model mean temperature (Ff), This is due to 
the fact that  for the same Ra there is better agreement between (pf) than between 
Nu calculated and measured. 

As mentioned previously, the grid resolution near the wall is a critical assumption 
in the overall model. As can be seen in figures 8-10, the model agrees reasonably well 
with the experimental results in the shape of the vertical-profile predictions of the 
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FIQURE 8. R.m.s. horizontal-velocity profile. Model: 0, u,,,,~, ; 
0 9  Vr.m.s. ~ , DeardorE & Willis (1967). 
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FIGURE 9. R.m.8. vertical velocity profile. Model: x , Wr,,,s. - , Deardorff & Willis (1967). 
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FIQURE 10. R.m.s. temperature profile. Model: x , !Z'r.m.s. ; 0, assumes (T')r.m.E. 
at k = 1 equals (T')r.m.s. at k = 2. -, DeardorE & Willis (1967). 
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FIQURE 1 1 .  Co-spectra of vertical velocity and temperature. For model wavenumber = #ti. 
Model: 0, Ra = 1.0 x lo'; 0, 2.5 x lo6; A, 6.3 x lo6. ---, Deardorff k Willis (1967). 

r.m.s. velocity and temperature. The r.m.8. levels are high as was noted above. The 
only serious discrepancy occurs in the calculation of Tr,m.s. a t  the grid point nearest 
to the wall. Tr.m.s. is composed of a component calculated for the filtered field and one 
estimated for the subgrid field which is a function of aTf/ax,. The estimated 
components were in serious error owing either to  inaccuracies in apf/ax, or in the 
derivation of the estimate as a result of the turbulence equilibrium assumption not 
being valid near the wall. When the subgrid estimate for the second grid point from 
the wall is used to calculate Tr.m.s, next to the wall, the values are reasonable and the 
data plotted was calculated in this fashion. Note the subgrid component is a small 
part of the overall r.m.s. levels (at the Ra of this study) except for the erroneous 
calculations a t  grid point 1 and the above assumption should be reasonable. 

Examples of the horizontal, one-dimensional spectra of the filtered velocity and 
temperature fields are shown in figures 11-13. The model data taken near the vertical 
centre has been time averaged to compare with the experimental results. They are 
compared with the data of Deardorff & Willis (1967). The experimental data were 
filtered using (8) and (9) and replotted. The model data were scaled differently from 
the results of Deardorff & Willis and have been plotted on a shifted axis in order to 
compare the slopes of the spectra. At the shorter wavelengths the model and the 
measurements compare favourably. At the longer wavelengths the effects of different 
aspect ratios prevent any detailed comparison. Owing to the low aspect ratio of the 
model, no peak in the spectra was observed. Such a peak should occur if the imposed 
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FIGURE 14. Turbulent viscosity/conductivity vs Ra, horizontal average at vertical centre. 
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FIGURE 15. Turbulent viscosity/conductivity profile. 

width of the horizontal boundary were large enough to allow the flow to select a 
characteristic flow length in the horizontal direction. In figure 13 a line with a slope 
of -5 has been filtered and drawn on the plot. At these values of Ra, a large 
equilibrium region does not occur (Deardorff & Willis 1967). The Reynolds number 
based on the Taylor microscale h and the square root of the total kinetic energy ranges 
from ReA = 28 a t  Ra = 3.8 x lo5 to Re, = 90 a t  Ra = 1 .O x lo7. h was estimated as 
(10 Pr Pe2/e)2 using a production-equals-dissipation assumption to estimate e. Pe is 
the non-dimensional total kinetic energy. 

An interesting output of the model is the amount of small-scale (subgrid) 
turbulence for the different values of Ra. The higher total turbulent production at 
the larger Ra should result in more subgrid turbulence. K is a measure of the subgrid 
turbulence level. Figure 14 shows the increase of K with Ra. K has been horizontally 
averaged at the vertical centre of the fluid layer. Figure 15 shows the variation of 
K away from the walls. This can be compared with the total turbulence production 
level P* shown in figure 16. P* is estimated as Pr Ra (u, T ) ,  where (u, T) is the 
horizontal average of the filtered and subgrid correlation between u3 and T. The 
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FIGURE 16. Comparison of the simulation model with experimental measurements, P* us z. 

3-D steady 

0'9 t 
o'8 t Turbulent 

-x- 3 . 8 ~  1 0 5  

6.3 x 1 0 5  

-z 

CWT 0 
0 

1.4 x lo6 
2.5 x lo6 0.6 1 ~ 

16 I I I I 1 
0 0.1 0.2 0.3 0.4 0.5 

x3 

FIGURE 17. C,, profile - model. 

subgrid turbulent production PSG is different from P* and can be estimated from (13), 
(14), and (17)  as follows, 

(26) 

Using figure 16, the variation in x3 with Psc can be compared with that for P*. The 
integrals of PsG and P* across the fluid layer should both estimate the total turbulent 
production. 

The correlation coefficient of the vertical velocity and temperature are plotted in 
figures 17 and 18. Since the correlation contains the subgrid estimates along with the 
filtered-field contribution and near the wall the subgrid estimates make a larger 
contribution, the coefficients must be viewed with caution in this region. Table 3 

PSG x E x constant x K3. 
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compares the levels from the computer model near the vertical centreline with several 
experimental values. Deardorff & Willis (1967) have measured the C,, vertical 
profiles, and their data suggests the same slightly increasing negative slope with 
increasing Ra as is found in the model predictions. Near the wall neither the model 
nor the experiment are sufficiently accurate for detailed comparisons. The flat profile 
a t  Ra = lo4 agrees with the direct-simulation results of Grotzbach (1982). 

6.2. Low-Rayleigh-number run 

When the subgrid model constant C is zero, the computer model will directly simulate 
the exact flow equations. One of the preliminary tests on the model was to  run it with 
C = 0 and compare the results with other direct simulations. The agreement was 
satisfactory and the study reported in 56.1 was then conducted. The direct simulation 
was run for Ra = lo4 and Pr = 1 with the boundary condition the same as for the 
study in $6.1. At these conditions the flow is not turbulent, but it is still of interest 
and so the results will be presented. 

The model results were compared with a direct simulation by Hathaway (1982) 
who simulated the identical problem with a finite-difference code using a different 
numerical scheme. Also available for comparison were simulations by Lipps (1976) 
at Ra = 9000 and Grotzbach (1982) a t  Ra = 7000 but for Pr = 0.76. The present 
model predicted Nu = 2.6 ( A  = 4) compared with 2.4 ( A ,  = 4.9, A ,  = 6.0) by 
Hathaway, 2.2 (A,  = 4.0, A ,  = 3.2) by Lipps and 2.3 ( A  = 2.8) by Grotzbach. 
Interpolating the values of Lipps and Grotzbach to Ra = lo4 gives Nu = 2.3 and 2.8 
respectively. Experimental measurements give values several tenths lower (Grotzbach 
1982), similar to  the differences reported for high Ra. The model had a temperature- 
gradient reversal, aT/az = 0.08, near the vertical centre of the fluid layer. The 
physical existence of such a temperature gradient has been debated in the literature 
but with no general consensus (Grotzbach 1982; and Chu & Goldstein 1973). 

I n  figures 19 and 20, contour and vector plots of the velocity and temperature field 
are presented. No observable time changes were apparent after a stabilizing period 
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FIQURE 19. u, w vector plots at Ra = 1.0 x lo'. 

FIQURE 20. Temperature contour plot at Ru = 1.0 x 10'. 

and thus the flow at only one time step is shown. The flow pattern of Hathawa 
similar. The pattern was also observed by Grotzbach (1982) but for a lower Ra = 

r was 
LOW. 

7. Conclusions 
The overall results demonstrate that the LES technique can be used to simulate 

the physics in a turbulent-natural-convection problem. Resolution (which translates 
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to  cost) is the major problem. Most work is needed in solving the resolution problem 
in the boundary region either through brute force (better computers and thus more 
grid points) or through a subgrid wall model. Use of a differential equation for the 
subgrid kinetic energy ESG would help. ESG could replace the velocity scale A ,  s' used 
in (13b).  A differential equation for ESG could provide more flexibility and better 
assumptions in the subgrid model. I n  addition, improvements in the numerical 
technique could increase the accuracy of the calculation. A stretched grid with 
increased resolution near the walls is an obvious example. Pseudo-spectral techniques 
using either Tschebycheff or Legendre polynomials, combined implicit/explicit 
techniques and multi-grid techniques are currently being tested by the author and 
other researchers. 

For more complicated flow geometries even improvements in computer hardware 
may not result in enough storage and speed to have sufficient grid points to resolve 
the flow in the inertial region of the energy spectrum. Models which account for the 
non-isotropic effects of the boundary conditions may then be necessary. This was the 
case in the present study near the wall. The LES of simple flows can be used to suggest 
and test such models by calculating the flow on a fine grid (with or without an 
equilibrium-based subgrid model) and comparing the results with a proposed model 
on a coarser grid (Clark et al. 1979). An extension of this idea leads one to a valuable 
use of the LES techniques, that  is the evaluation of the terms in the long-time-averaged 
equations for the kinetic energy and Reynolds stresses. Since the large-scale flow is 
explicitly calculated, the spacial and temporal composition of these averaged terms 
can be studied. For example, the large-scale motion is buoyancy generated in the 
Rayleigh-BBnard problem. The smaller-scale motion is produced by the interaction 
of the larger-scale velocity field. A quantitative analysis of the flow scales, for which 
each of the above effects is important, could be calculated from the results of an 
LES. 
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